Quantitative study of the variable pollutant load in hospital wastewater from the Imbanaco Clinic in the city of Cali
DOI:
https://doi.org/10.56294/evk202266Keywords:
Hospital wastewater, physicochemical parameters, oxidation process, micro pollutantsAbstract
Water contamination by emerging contaminants due to human activities has become one of the most critical difficulties in recent years. Within this problem of wastewater, we find hospital wastewater, catalogued as an important source of environmental risk due to the presence of metabolites and emerging micro contaminants. This wastewater includes laundry, kitchen, cleaning and diagnostic services, as well as care, laboratory, research and diagnostic activities. It is a challenge for health service providers to address this problem and comply with current environmental regulations. There are different processes, including advanced oxidation processes, in this case by ozonation. However, it is important to know the pollutant nature of each effluent that is why the purpose of this research was to identify the organic load contributed by the liquid waste from the headquarters of the Imbanaco Medical Center located in the city of Cali, Valle del Cauca, the experimental design evaluated allows concluding that the cleaning and sterilization supplies used in the Imbanaco Medical Center are highly recalcitrant and exceed the maximum permissible limits established by resolution 0631 of 2015.
References
Almeida E, Assalin MR, Rosa MA, Durán N. Tratamento de efluentes industriais por processos oxidativos na presença de ozônio. Quím Nova. 2004;27(5):818–24. doi:10.1590/s0100-40422004000500023 DOI: https://doi.org/10.1590/S0100-40422004000500023
Balcioğlu IA, Ötker M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere. 2003;50(1):85–95. doi:10.1016/S0045-6535(02)00534-9 DOI: https://doi.org/10.1016/S0045-6535(02)00534-9
Belzona. Tratamiento de aguas residuales [Internet]. Belzona Inc.; 2008 [citado 2021 sep 7];1(55):1–15. Disponible en: http://files.bernardo-servin-massieu.com/200000057-b3f9cb4e88/residuales.pdf
Belzona. Guía de aplicaciones Belzona en equipos de tratamiento de aguas residuales - Tratamiento de aguas residuales [Internet]. Belzona Inc.; 2010 [citado 2021 sep 7];40. Disponible en: https://www.belzona.com/es/industries/wastewater.aspx
Bes Monge SS, Silva DAM, Bengoa DC. Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriales [Internet]. Belzona Inc.; 2016 [citado 2021 sep 7]. Disponible en: http://www.cyted.org/sites/default/files/manual_sobre_oxidaciones_avanzadas_0.pdf
Camenforte M, Pérez J. Alternativa a la desinfección del agua con cloro: ozonización. 2014;1–20.
Centa. Manual de depuración de aguas residuales urbanas [Internet]. Centa, Secretariado de Alianza por el Agua, Ecología y Desarrollo; 2008 [citado 2021 sep 25];264. Disponible en: http://alianzaporelagua.org/documentos/MONOGRAFICO3.pdf
Comisión Nacional del Agua (CONAGUA), Tzatchkov VG, Villagómez IAC. Diseño de lagunas de estabilización. In: Manual de agua potable, alcantarillado y saneamiento [Internet]. México: CONAGUA; 2015 [citado 2021 sep 7]. Disponible en: http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/Libros/10DisenoDeLagunasDeEstabilizacion.pdf
González O, Bayarri B, Aceña J, Pérez S, Barceló D. Treatment technologies for wastewater reuse: fate of contaminants of emerging concern. In: The Handbook of Environmental Chemistry [Internet]. 2015 [citado 2021 may 2];5–37. Disponible en: https://doi.org/10.1007/698_2015_363 DOI: https://doi.org/10.1007/698_2015_363
Hrenovic J, Ivankovic T, Ivekovic D, Repec S, Stipanicev D, Ganjto M. The fate of carbapenem-resistant bacteria in a wastewater treatment plant. Water Res. 2017;126:232–9. doi:10.1016/j.watres.2017.09.007 DOI: https://doi.org/10.1016/j.watres.2017.09.007
Benitez FJ, Acero JL, Real FJ, Roldán G. Ozonation of pharmaceutical compounds: rate constants and elimination in various water matrices. Chemosphere. 2009;77(1):53–9. doi:10.1016/j.chemosphere.2009.05.035 DOI: https://doi.org/10.1016/j.chemosphere.2009.05.035
Lima VC, Prata TS, Landa G, Yannuzzi LA, Rosen RB. Intravitreal triamcinolone and bevacizumab therapy for combined papillophlebitis and central retinal artery occlusion. Retin Cases Brief Rep. 2010;4(2):125–8. doi:10.1097/ICB.0b013e3181ad3957 DOI: https://doi.org/10.1097/ICB.0b013e3181ad3957
Ministerio de Ambiente y Desarrollo Sostenible. Resolución 631 de 2015 [Internet]. Diario Oficial No. 49.486; 2015 [citado 2021 may 2]. Disponible en: http://www.minambiente.gov.co/images/normativa/app/resoluciones/d1res_631_marz_2015.pdf
Manuel J, Navarrete R. Normatividad colombiana en los vertimientos hospitalarios: impactos ambientales y de salud pública. 2016.
Ministerio de Ambiente y Desarrollo Sostenible. Resolución 631 de 2015 [Internet]. 2015 [citado 2021 jun 15]. Disponible en: http://www.minambiente.gov.co/images/normativa/app/resoluciones/d1res_631_marz_2015.pdf
Ministerio del Medio Ambiente. Resolución 01164 de 2002 [Internet]. 2002 [citado 2021 jun 15]. Disponible en: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=36291
Mitcheson L, Maslin J, Meynen T, Morrison T, Hill R, Wanigaratne S. Fundamentals of treatment. In: Applied Cognitive and Behavioural Approaches to the Treatment of Addiction [Internet]. 2010 [citado 2021 may 2]. Disponible en: https://doi.org/10.1002/9780470661420.ch3 DOI: https://doi.org/10.1002/9780470661420
Muñoz M, Garcia-Muñoz P, Pliego G, De Pedro ZM, Zazo JA, Casas JA, Rodriguez JJ. Application of intensified Fenton oxidation to the treatment of hospital wastewater: kinetics, ecotoxicity and disinfection. J Environ Chem Eng. 2016;4(4):4107–12. doi:10.1016/j.jece.2016.09.019 DOI: https://doi.org/10.1016/j.jece.2016.09.019
Muyo C. Procesos biológicos aerobios [Internet]. Curso sobre tratamiento y reciclaje de aguas residuales industriales mediante soluciones sostenibles; 2016 [citado 2021 jun 19]. Disponible en: http://triton-cyted.com/wp-content/uploads/2017/04/Presentaci%C3%B3n.pdf
Oikawa S, Tsuda M, Okamura Y, Urabe T. Prefulvene as a stable intermediate at the potential energy surface minimum of the benzene ⇌ benzvalene isomerization process. J Am Chem Soc. 1984;106(22):6751–5. doi:10.1021/ja00334a047 DOI: https://doi.org/10.1021/ja00334a047
Ouarda Y, Tiwari B, Azaïs A, Vaudreuil MA, Ndiaye SD, Drogui P, et al. Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment. Chemosphere. 2018;193:160–9. doi:10.1016/j.chemosphere.2017.11.010 DOI: https://doi.org/10.1016/j.chemosphere.2017.11.010
Penagos DG, López JO, Chaparro TR. Remoción de la materia orgánica y toxicidad en aguas residuales hospitalarias aplicando ozono. DYNA (Colombia). 2012;79(173 Pt I):109–15.
Rojas JAR. Calidad del agua [Internet]. 2009 [citado 2021 ago 25]. Disponible en: https://www.belzona.com/es/industries/wastewater.aspx
Santiago EB, Calderón Ancona JM. Diseño y construcción de un generador de ozono para aplicaciones de purificación de agua. 2005;120.
Shin J, Choi S, Park CM, Wang J, Kim YM. Reduction of antibiotic resistome in influent of a wastewater treatment plant (WWTP) via a chemically enhanced primary treatment (CEPT) process. Chemosphere. 2022;286(P1):131569. doi:10.1016/j.chemosphere.2021.131569 DOI: https://doi.org/10.1016/j.chemosphere.2021.131569
Torán J, Blánquez P, Caminal G. Comparison between several reactors with Trametes versicolor immobilized on lignocellulosic support for the continuous treatments of hospital wastewater. Bioresour Technol. 2017;243:966–74. doi:10.1016/j.biortech.2017.07.055 DOI: https://doi.org/10.1016/j.biortech.2017.07.055
Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J Hydrol. 2010;389(3–4):416–28. doi:10.1016/j.jhydrol.2010.06.005 DOI: https://doi.org/10.1016/j.jhydrol.2010.06.005
Virkutyte J. Treatment of micropollutants in water and wastewater. In: Water Intelligence Online [Internet]. 2010 [citado 2021 oct 11];9. Disponible en: https://doi.org/10.2166/9781780401447 DOI: https://doi.org/10.2166/9781780401447
McCabe WL, Smith JC, Harriot P, Colton RH. Operaciones unitarias en ingeniería química. 7.ª ed. México: McGraw-Hill; 2013.
Patiño Y, Díaz E, Ordóñez S. Recuperado el 11 de octubre de 2021, de Redalyc: http://www.redalyc.org/articulo.oa?id=323631115001
Published
Issue
Section
License
Copyright (c) 2022 Sara Juliana Jaramillo Arvilla, Julián Diel Urresta Aragón, Natali Lorena Mena Guerrero, Carla Stephanny Cárdenas Bustos (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.