Biomedical devices and microfluidics: development of lab-on-a-chip systems, biosensors and diagnostic devices with applications in clinical and point-of-care settings

Authors

DOI:

https://doi.org/10.56294/evk2025167

Keywords:

Microfluidics, Biomedical Devices, Biosensors, Clinical Applications

Abstract

The convergence of biomedical devices and microfluidics is revolutionizing diagnosis and treatment in the healthcare sector, offering faster, more accurate, and more accessible solutions. Microfluidics, which manipulates fluids at nanometer and micrometer scales, leverages principles such as laminar flow and diffusion to enable the development of miniaturized systems. Labs-on-a-Chip (LOC) are the embodiment of this symbiosis. These devices integrate multiple laboratory functions into a single platform, utilizing manufacturing techniques such as photolithography and 3D printing. Their impact is palpable in the rapid detection of pathogens, the diagnosis of chronic diseases and cancer, drug discovery, and personalized medicine, facilitating point-of-care (POC) testing with minimal sample volumes and reduced costs. The integration of biosensors (optical, electrochemical, nucleic acid-based) into microfluidic platforms enhances biomarker detection with high sensitivity and specificity. This translates into earlier diagnoses and continuous monitoring. Although these advances promise to transform healthcare, significant challenges remain. Production scalability, cost reduction, regulatory harmonization, and the need for biocompatible materials are crucial hurdles. However, future trends are promising, including the incorporation of artificial intelligence for more efficient analysis, the development of wearable and implantable biosensors, and the expansion of organs-on-chip for biomedical research. Microfluidics and biomedical devices are shaping the future of more efficient and personalized medicine.

References

1. Cancer. Dispositivo microfluídico. https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/dispositivo-microfluidico

2. Formlabs. Microfluídica y milifluídica: fabricación de laboratorio en un chip. https://formlabs.com/es/blog/microfluidica-milifluidica-fabricacion-laboratorio-chip/

3. Reginensi D, Cisterna C, Rosas M. Microfluídica como plataforma de estudio en neurobiología. Gente Clave. 2019; 3(2):93–102. https://dialnet.unirioja.es/descarga/articulo/9786930.pdf

4. Ortiz De Solórzano-Aurusa C. Sistemas Microfisiológicos y Biología Cuantitativa. Cima Universidad de Navarra. https://cima.cun.es/investigacion/programas-investigacion/programa-igenieria-biomedica/grupo-sistemas-microfisiologicos-biologia-cuantitativa

5. Instituto Nacional de Salud. Tecnologías Sobre Métodos de Detección Utilizando Microfluidos. Boletín Tecnológico No. 5. Lima, Perú; 2019. https://cdn.www.gob.pe/uploads/document/file/8161161/6831659-boletin-microfluidos-ins-5.pdf

6. Jakiunde.eus. La tecnología microfluídica. https://www.jakiunde.eus/en/article/la-tecnologia-microfluidica

7. BMSEED. What is Microfluidics. https://www.bmseed.com/what-is-microfluidics

8. Wikipedia. Microfluidics. https://en.wikipedia.org/wiki/Microfluidics

9. Yadav S; Dwivedi M; Singh S; Jangir P. Biomedical implication of microfluidics in disease diagnosis and therapeutics: from fabrication to prognosis. 2025; Biofabrication; 17. https://www.researchgate.net/publication/389873708_Biomedical_implication_of_microfluidics_in_disease_diagnosis_and_therapeutics_from_fabrication_to_prognosis DOI: https://doi.org/10.1088/1758-5090/adc0c2

10. News-Medical.net. How Fluidics is Powering Modern Healthcare and Medical Device Innovation. https://www.news-medical.net/news/20250612/How-Fluidics-is-Powering-Modern-Healthcare-and-Medical-Device-Innovation.aspx

11. Elveflow. Microfluidics applications: a short review. https://www.elveflow.com/microfluidic-reviews/microfluidics-applications-a-short-review/

12. Wang S, Guan X, Sun S. Microfluidic Biosensors: Enabling Advanced Disease Detection. Sensors (Basel). 2025 Mar 20;25(6):1936. https://pmc.ncbi.nlm.nih.gov/articles/PMC9953641/

13. Shah P, Bhardwaj A, Singh S, Singh Y, Singh S, Singh S, et al. Biomedical Applications of Microfluidic Devices: A Review. Micromachines. 2022 Nov 16; 13(11):1984. https://pmc.ncbi.nlm.nih.gov/articles/PMC9688231/

14. García Fernández J. Uso de microfluidos en reproducción asistida. Universidad Europea; 2021 Oct. https://titula.universidadeuropea.com/bitstream/handle/20.500.12880/735/Javier_Garcia_Fernandez.pdf?sequence=1&isAllowed=y

15. Valero A, Saenz-del-Burgo L, Orive G, Pedraz JL. Microfluidics as a powerful enabling technology to investigate the natural complexity of cellular systems. Dadun.unav.edu. 2017. https://dadun.unav.edu/bitstreams/0628abe3-fe90-45da-925d-5b0460d81974/download

16. Reyes-Blas H; Olivas-Armendariz I; Martel-Estrada SA; Valencia-Gomez LE. Uso de Biomateriales Funcionalizados con Moléculas Bioactivas en la Ingeniería Biomédica. Rev. mex. ing. bioméd. 2019, 40(3):e201913EE3. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-95322019000300009

17. Martín Galán A. Graphene-based nanomaterials innovative tools in electrochemical and microfluidic biosensing and in micromotors design. Universidad de Alcalá; España. 2016. https://www.funcas.es/wp-content/uploads/Migracion/Publicaciones/PDF/2096.pdf

18. Fernández-Rivas D. Microfluidos: ¿cuánto hay de nuevo? Rev. Cub. de Física. 2008. 25(2B):142-149. https://www.researchgate.net/publication/228703407_Microfluidos_cuanto_hay_de_nuevo

19. Food and Drug Administration. El Rol de la FDA. https://www.fda.gov/media/135781/download

20. Food and Drug Administration. How to Determine if Your Product is a Medical Device. https://www.fda.gov/medical-devices/classify-your-medical-device/how-determine-if-your-product-medical-device

21. Coalición interamericana de convergencia regulatoria. ASTM_Español. https://interamericancoalition-medtech.org/wp-content/uploads/2020/09/ASTM_Espa%C3%B1ol.pdf

22. Ambit-Iberia. Medical Device: guía rápida de referencia. https://www.ambit-iberia.com/blog/medical-device-gu%C3%ADa-r%C3%A1pida-de-referencia

23. Cancer. Dispositivo médico. https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/dispositivo-medico

24. Coalición interamericana de convergencia regulatoria. Defnición de Dispositivo Médico. https://www.interamericancoalition-medtech.org/regulatory-convergence/wp-content/uploads/sites/4/2021/06/Def.Disp_.Med_.-ESPANOL-1.pdf

25. Wille R. Efficient design of labs-on-a-chip. Technical University of Munich and Software Competence Center Hagenberg. https://www.cda.cit.tum.de/files/eda/2022_01_projectrepositoryjournal_efficient_design_of_labs-on-a-chip.pdf DOI: https://doi.org/10.54050/PRJ1218339

26. Brecher B. What Is Lab on a Chip. BuiltIn. https://builtin.com/articles/lab-on-a-chip

27. Needle.tube. Fabrication techniques for Lab-on-a-chip. https://www.needle.tube/blog/fabrication-techniques-for-lab-on-a-chip

28. Scott SM, Ali Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines (Basel). 2021 Mar 18;12(3):319. doi: 10.3390/mi12030319. https://pmc.ncbi.nlm.nih.gov/articles/PMC8002879/ DOI: https://doi.org/10.3390/mi12030319

29. Ardila CM. Advancing healthcare through laboratory on a chip technology: Transforming microorganism identification and diagnostics. World J Clin Cases. 2025 Jan 26;13(3):97737. doi: 10.12998/wjcc.v13.i3.97737 https://pmc.ncbi.nlm.nih.gov/articles/PMC11577522/#:~:text=LOC%20technology%20integrates%20various%20laboratory,diagnostics%20in%20healthcare%20and%20beyond.

30. Ardila CM. Advancing healthcare through laboratory on a chip technology: Transforming microorganism identification and diagnostics. World J Clin Cases. 2025 Jan 26;13(3):97737. doi: 10.12998/wjcc.v13.i3.97737. https://pmc.ncbi.nlm.nih.gov/articles/PMC11577522/ DOI: https://doi.org/10.12998/wjcc.v13.i3.97737

31. Battat S; Weitz DA; Whitesides GM. An outlook on microfluidics: the promise and the challenge. Lab on a Chip. 2022; 3. DOI: https://doi.org/10.1039/D1LC00731A DOI: https://doi.org/10.1039/D1LC00731A

32. Valdivia-Silva J, Pérez-Tulich L, Flores-Olazo L, Málaga-JULCA Ma, Ubidia A, Fleschman A et al . Desarrollo de un sistema microfluidico (lab-on-a-chip) accesible y de bajo costo para detección de células tumorales circulantes de cáncer de mama. Acta méd. Peru. 2020 Ene; 37(1): 40-47. http://dx.doi.org/10.35663/amp.2020.371.967. DOI: https://doi.org/10.35663/amp.2020.371.967

33. Álvarez-Martínez JU, Segura-Gómez G, Medina-Cázares O, Rosas-Román IR, Ruiz-Veloz M, Gutiérrez-Juárez G, Castro-Beltrán R. Laboratorios de análisis en un chip del tamaño de nuestro pulgar (Lab-on-a-Chip). Universidad de Guanajuato; México. 2021. https://www.ugto.mx/investigacionyposgrado/eugreka//contribuciones/409-laboratorios-de-analisis-en-un-chip-del-tamano-de-nuestro-pulgar-lab-on-a-chip

34. Festo. Diseño y fabricación de equipos Lab-on-a-Chip. https://www.festo.com/es/es/e/sobre-festo/blog/innovation/diseno-de-fabricacion-de-equipos-lab-on-a-chip-id_1621723/

35. Profesional Review. Lab on a chip ¿Qué es? ¿Para qué se emplea esta tecnología? https://www.profesionalreview.com/2022/11/06/lab-on-a-chip/

36. Wikipedia. Lab on a chip. https://es.wikipedia.org/wiki/Lab_on_a_chip

37. Neuži P, Giselbrecht S, Länge K, Huang TJ, Manz A. Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov. 2012 Aug; 11(8):620-32. doi: 10.1038/nrd3799.https://pmc.ncbi.nlm.nih.gov/articles/PMC6493334/ DOI: https://doi.org/10.1038/nrd3799

38. Drese KS. Lab on a Chip. Internist (Berl). 2019 Apr;60(4):339-344. German. doi: 10.1007/s00108-018-0526-y. PMID: 30506152. https://pubmed.ncbi.nlm.nih.gov/30506152/ DOI: https://doi.org/10.1007/s00108-018-0526-y

39. Sruthi PS. Review on Lab on Chip Fabrication and its Application in Food Safety Sensing. Current Journal of Applied Science and Technology 42(46):158-171 https://www.researchgate.net/publication/376360146_Review_on_Lab_on_Chip_Fabrication_and_its_Application_in_Food_Safety_Sensing DOI: https://doi.org/10.9734/cjast/2023/v42i464304

40. Giannitsis AT. Microfabrication of biomedical lab-on-chip devices: A review. https://www.researchgate.net/publication/228777339_Microfabrication_of_biomedical_lab-on-chip_devices_A_review

41. Insitituto Tecnológico de Aragón. Sensores virtuales para sistemas microfluídicos. https://www.ita.es/blog/sensores-virtuales-para-sistemas-microfluidicos/

42. Diezma Belén, Correa EC. Biosensores y sistemas ópticos y de visión avanzados: su aplicación en la evaluación de la calidad de productos IV gama. Agrociencia Uruguay. 2018; 22( 1 ): 13-25. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482018000100013&lng=es. DOI: https://doi.org/10.31285/AGRO.22.1.2

43. Peto Gutierrez CV. Desarrollo de un biosensor electroquímico miniaturizado. UNAM. 2019. https://ru.dgb.unam.mx/bitstream/20.500.14330/TES01000787456/3/0787456.pdf

44. Basque digital innovation hub. Biosensores y plataformas de diagnóstico in vitro. https://bdih.spri.eus/es/biosensores-y-plataformas-de-diagnostico-in-vitro/

45. Wikipedia. Biosensores de microARN. https://es.wikipedia.org/wiki/Biosensores_de_microARN

46. Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. Smart Med. 2023 Feb 12;2(1):e20220027. doi: 10.1002/SMMD.20220027. https://pmc.ncbi.nlm.nih.gov/articles/PMC11235902/ DOI: https://doi.org/10.1002/SMMD.20220027

47. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors (Basel). 2015 Dec 1;15(12):30011-31. doi: 10.3390/s151229783. https://pmc.ncbi.nlm.nih.gov/articles/PMC4721704/ DOI: https://doi.org/10.3390/s151229783

48. Lapizco-Encinas BH. Aplicaciones de microfluídica en bioseparaciones. Revista Mexicana de Ingeniería Química. 2008. 7(3):205-214. http://www.redalyc.org/articulo.oa?id=62011164003

49. González-Rumayor V, García-Iglesias E; Ruiz-Galán O; Gago-Cabezas L. Aplicaciones de biosensores en la industria agroalimentaria. Fundación para el conocimiento Madrid CEIM. http://www.ugr.es/~cjl/VT1_Aplicaciones_de_biosensores_en_la_industria_agroalimentaria.pdf

50. LabMedica. Biosensor electrónico detecta biomarcadores en muestras de sangre completa sin agregar reactivos. https://www.labmedica.es/tecnologia/articles/294797007/biosensor-electronico-detecta-biomarcadores-en-muestras-de-sangre-completa-sin-agregar-reactivos.html

51. Didarian R, Azar MT. Microfluidic biosensors: revolutionizing detection in DNA analysis, cellular analysis, and pathogen detection. Biomed Microdevices. 2025 Feb 26;27(1):10. doi: 10.1007/s10544-025-00741-6. https://pubmed.ncbi.nlm.nih.gov/40011268/ DOI: https://doi.org/10.1007/s10544-025-00741-6

52. Wang S, Guan X, Sun S. Microfluidic Biosensors: Enabling Advanced Disease Detection. Sensors. 2025; 25(6):1936. https://pubmed.ncbi.nlm.nih.gov/40293099/

53. Wang L, Zhu W, Zhang J, Zhu J-J. Miniaturized Microfluidic Electrochemical Biosensors Powered by Enzymatic Biofuel Cell. Biosensors. 2023; 13(2):175. https://doi.org/10.3390/bios13020175 DOI: https://doi.org/10.3390/bios13020175

54. Glatz RT, Ates HC, Mohsenin H, Weber W, Dincer C. Designing electrochemical microfluidic multiplexed biosensors for on-site applications. Anal Bioanal Chem. 2022 Sep;414(22):6531-6540. doi: 10.1007/s00216-022-04210-4. https://pmc.ncbi.nlm.nih.gov/articles/PMC9411084/ DOI: https://doi.org/10.1007/s00216-022-04210-4

55. Wang S, Guan X, Sun S. Microfluidic Biosensors: Enabling Advanced Disease Detection. Sensors. 2025; 25(6):1936. https://doi.org/10.3390/s25061936 DOI: https://doi.org/10.3390/s25061936

56. Jarnda KV, Dai H, Ali A, Bestman PL, Trafialek J, Roberts-Jarnda GP, Anaman R, Kamara MG, Wu P, Ding P. A Review on Optical Biosensors for Monitoring of Uric Acid and Blood Glucose Using Portable POCT Devices: Status, Challenges, and Future Horizons. Biosensors. 2025; 15(4):222. https://doi.org/10.3390/bios15040222 DOI: https://doi.org/10.3390/bios15040222

57. AT-Machining. Microfluidic chip manufacturing. https://at-machining.com/es/microfluidic-chip-manufacturing/

58. Gallo-Villanueva RC; Pérez-González VH. Microfluídica y proteínas. TecScience. 2025. https://tecscience.tec.mx/es/divulgacion-ciencia/microfluidica-y-proteinas/

59. Novak, R., Didier, M., Calamari, E., Ng, C. F., Choe, Y., Clauson, S. L., Nestor, B. A., Puerta, J., Fleming, R., Firoozinezhad, S. J., Ingber, D. E. Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J. Vis. Exp. (140), e58151, doi:10.3791/58151 (2018). https://www.jove.com/t/58151/scalable-fabrication-stretchable-dual-channel-microfluidic-organ?language=Spanish DOI: https://doi.org/10.3791/58151

60. Elvesys. Introduction to Lab-on-a-Chip: Review, History and Future. Elveflow. https://www.elveflow.com/microfluidic-reviews/introduction-to-lab-on-a-chip-review-history-and-future/

61. Godínez-Cardoza G. Diseño de un dispositivo microfluídico de bajo costo, para la separación de microorganismos y células de interés médico y biotecnológico de tamaño entre 10 a 200 µm.

nstituto Tecnológico de Pachuca; México. 2016 https://itp.itpachuca.edu.mx/pdf/repositorio_tesis/14200858.pdf

62. Databridgemarketresearch.com. Global microfluidic devices market. https://www.databridgemarketresearch.com/es/reports/global-microfluidic-devices-market

63. Mayo JA. Dispositivos microfluidicos impresos en 3D: un enfoque alterno para una variedad de aplicaciones. Universidad Simón Bolívar Caracas, Venezuela. https://www.researchgate.net/publication/372394373_Dispositivos_microfluidicos_impresos_en_3D_un_enfoque_alterno_para_una_variedad_de_aplicaciones

64. Food and Drug Administration. Una Introducción a los Reglamentos de Dispositivos Médicos de la FDA. https://www.fda.gov/media/135781/download

65. Mundoposgrado.com. Nuevas Tendencias en Investigación Biomédica y profesionales del Futuro. https://www.mundoposgrado.com/tendencias-en-investigacion-biomedica/

66. Diseño de un dispositivo microfluídico de bajo costo, para la separación de microorganismos y células de interés médico y biotecnológico de tamaño entre 10 a 200 μm. Itp.itpachuca.edu.mx. https://itp.itpachuca.edu.mx/pdf/repositorio_tesis/14200858.pdf.

Downloads

Published

2025-06-20

Issue

Section

Reviews

How to Cite

1.
Robaina Castillo JI, López Sánchez AA. Biomedical devices and microfluidics: development of lab-on-a-chip systems, biosensors and diagnostic devices with applications in clinical and point-of-care settings. eVitroKhem [Internet]. 2025 Jun. 20 [cited 2025 Aug. 27];4:167. Available from: https://evk.ageditor.ar/index.php/evk/article/view/167