Bioremediation of hydrocarbon-contaminated soils: review and perspective for Ecuador in the Latin American context
DOI:
https://doi.org/10.56294/evk2024145Keywords:
Bioremediation, Hydrocarbons, Contaminated Soils, EcuadorAbstract
Introduction: soil contamination by hydrocarbons is a critical problem in megadiverse countries like Ecuador, where oil activity generates severe environmental impacts, especially in sensitive ecosystems such as the Amazon.
Objective: to examine the state-of-the-art bioremediation techniques for hydrocarbon-contaminated soils in Latin America, with a special emphasis on Ecuador.
Development: bioremediation is addressed as a sustainable alternative for restoring contaminated soils, highlighting techniques such as phytoremediation, mycoremediation, biostimulation, bioaugmentation, and the use of biochar and biosurfactants. The role of indigenous microorganisms (bacteria and fungi) and microbial consortia in the degradation of contaminants such as total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) is emphasized. Although there has been significant international progress, the applicability of these techniques in tropical and megadiverse contexts—such as those in Latin America—remains limited. Ecuador, despite its environmental vulnerability and economic dependence on oil, has limited scientific output in this field.
Conclusions: there is a need to adapt bioremediation strategies to local conditions, considering soil and climate factors, native biodiversity, and socio-environmental dynamics.
References
1. Hidalgo-Lasso D, García-Villacís K, Urvina Ulloa J, Marín Tapia D, Gómez Ortega P, Coulon F. Updating risk remediation-endpoints for petroleum-contaminated soils? A case study in the Ecuadorian Amazon region. Heliyon. 2024;10(9). DOI: https://doi.org/10.1016/j.heliyon.2024.e30395
2. Pozo-Rivera WE, Quiloango-Chimarro C, Paredes X, Landívar M, Chiriboga C, Villacís J, et al. Response of dung beetle diversity to remediation of soil ecosystems in the Ecuadorian Amazon. Peerj. 2023;11. DOI: https://doi.org/10.7717/peerj.14975
3. Camacho DND, Macías TLS, Riera MA, Anchundia BJC. BIOREMEDIATION OF SOIL SAMPLES CONTAMINATED WITH CRUDE OIL USING RICE HUCK-BASED BIOCARBON (ORYZA SATIVA). International Journal of Conservation Science. 2024;15(2):1129–44. DOI: https://doi.org/10.36868/IJCS.2024.02.25
4. Wei Z, Wei Y, Liu Y, Niu S, Xu Y, Wang JJ, et al. Biocharbased materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: Performances, mechanisms, and environmental impact. Journal of Environmental Sciences China. 2024;138:350–72. DOI: https://doi.org/10.1016/j.jes.2023.04.008
5. Andrade JC, Mafla S, Riofrío K, Hernández J, Tobes I, Lara-Basantes C. Hydrocarbon tolerance evaluation of the microbiota associated with the Roystonea oleracea palm from Santay Island (Ecuador). IOP Conference Series: Earth and Environmental Science. 2024;1434(1). DOI: https://doi.org/10.1088/1755-1315/1434/1/012005
6. Hoang SA, Seshadri B, Bolan NS, Sarkar B, Lamb D, Vinu A, et al. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials. 2021;416. DOI: https://doi.org/10.1016/j.jhazmat.2021.125702
7. Hariyo DD, Saparrat MCN, Barrera MD. Changes in microbial communities during phytoremediation of contaminated soil with phenanthrene. Brazilian Journal of Microbiology. 2020;51(4):1853–60. DOI: https://doi.org/10.1007/s42770-020-00309-x
8. de la Cruz-Izquierdo RI, Paz-González AD, Reyes-Espinosa F, Vazquez-Jimenez LK, Rivera G, Salinas-Sandoval M, et al. Analysis of phenanthrene degradation by Ascomycota fungi isolated from contaminated soil from Reynosa, Mexico. Letters in Applied Microbiology. 2021;72(5):542–55. DOI: https://doi.org/10.1111/lam.13451
9. Mauricio-Gutiérrez A, Jiménez-Salgado T, Tapia-Hernández A, Romero-Arenas O. Diesel degradation by residual substrate of Agaricus bisporus at the microcosm level | Degradación de diésel por sustrato residual de Agaricus bisporus a nivel microcosmos. Revista Mexicana De Ciencias Agricolas. 2022;13(2):223–34. DOI: https://doi.org/10.29312/remexca.v13i2.2656
10. Cambarieri L, Acuña AJ, Pucci GN. Optimizing a biostimulation process in a soil of Río Gallegos, Argentina, for use in bioremediation of hydrocarbons | Optimización de un proceso de bioestimulación en un suelo de Río Gallegos, Argentina, para su utilización en biorremediación de hidrocarb. Ecosistemas. 2021;30(1). DOI: https://doi.org/10.7818/ECOS.2084
11. Araújo HWC, Andrade RFS, Montero-Rodríguez D, Rubio-Ribeaux D, Alves Da Silva CA, Campos-Takaki GM. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories. 2019;18(1). DOI: https://doi.org/10.1186/s12934-018-1046-0
12. Chan-Quijano JG, Cach-Pérez MJ, Valdez-Hernández M, González-Salvatierra C, Ceccon E. Physiological performance of two tree species in oil-contaminated soil | Desempeño fisiológico de dos especies arbóreas en un suelo contaminado con petróleo. Botanical Sciences. 2023;101(1):197–216. DOI: https://doi.org/10.17129/botsci.3060
13. Márquez A, Guevara E, Pérez S, Freytez E, Maldonado J, Buroz E. Soil and groundwater remediation proposal for hydrocarbons in a tropical aquifer. Journal of Applied Water Engineering and Research. 2023;11(2):141–68. DOI: https://doi.org/10.1080/23249676.2022.2089246
14. Darío T, Velásquez M, Velasquez M. Biorremediación de suelos contaminados con hidrocarburos en Latinoamérica: revisión entre 2010-2023. Revista Estudios Ambientales. 2024;12(1):27–43. DOI: https://doi.org/10.47069/estudios-ambientales.v12i1.2278
15. Páliz KP, Licta E, Cunachi AM. Reduction of the soil environmental impact caused by the presence of total petroleum hydrocarbons (TPH) by using Pseudomonas sp. Scientific Review Engineering and Environmental Sciences. 2021;30(4):573–84. DOI: https://doi.org/10.22630/PNIKS.2021.30.4.48
16. Benítez LPT, Miranda LM, Castro CAC. Phytoremediation to Remove Pollutants from Water, Leachates and Soils. Chemical Engineering Transactions. 2022;92:553–8.
17. Morales-Guzmán G, Ferrera-Cerrato R, Esquivel-Cote R, Alarcón A, Rivera-Cruz MDC, Torres-Bustillos LG, et al. Phytoremediation of soil contaminated with weathered petroleum hydrocarbons by applying mineral fertilization, an anionic surfactant, or hydrocarbonoclastic bacteria. International Journal of Phytoremediation. 2023;25(3):329–38. DOI: https://doi.org/10.1080/15226514.2022.2083577
18. García-Uitz K, León-Pech MG, Cruz JC, Moreno-Andrade I, Giácoman-Vallejos G, Ponce-Caballero C. Isolation and characterization of microbial diversity in phenanthrene-degrading consortia in a pollution zone in Ciudad del Carmen, Mexico | Aislamiento y caracterización de la diversidad microbiana de consorcios degradadores de fenantreno de una zona con. Revista Mexicana De Ingeniera Quimica. 2024;23(2). DOI: https://doi.org/10.24275/rmiq/Bio24241
19. Davoodi SM, Miri S, Brar SK, Martel R. Formulation of Synthetic Bacteria Consortia for Enzymatic Biodegradation of Polyaromatic Hydrocarbons contaminated soil: Soil Column Study. 2023. DOI: https://doi.org/10.21203/rs.3.rs-2365484/v1
20. Bidja Abena MT, Chen G, Chen Z, Zheng X, Li S, Li T, et al. Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. 3 Biotech. 2020;10(2). DOI: https://doi.org/10.1007/s13205-019-2027-7
21. Dike CC, Shahsavari E, Surapaneni A, Shah K, Ball AS. Can biochar be an effective and reliable biostimulating agent for the remediation of hydrocarboncontaminated soils? Environment International. 2021;154. DOI: https://doi.org/10.1016/j.envint.2021.106553
22. Cruz-Narváez Y, Rico-Arzate E, Castro-Arellano JJ, Noriega-Altamirano G, PiñaEscobedo A, Murugesan S, et al. Obtaining microorganisms in cloud forest soils for the degradation of aromatic hydrocarbons | Obtención de microorganismos en suelos de un bosque de niebla, para la degradación de hidrocarburos aromáticos. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente. 2019;25(1):95–106. DOI: https://doi.org/10.5154/r.rchscfa.2018.06.055
23. Quiñones-Cerna C, Castañeda-Aspajo A, Tirado-Gutierrez M, Ugarte-López W, Salirrosas-Fernández D, Rodríguez-Soto JC, et al. Efficacy of Indigenous Bacteria in the Biodegradation of Hydrocarbons Isolated from Agricultural Soils in Huamachuco, Peru. Microorganisms. 2024;12(9). DOI: https://doi.org/10.3390/microorganisms12091896
24. Márquez-Romance AM, Cárdenas-Izaguirre SF, Guevara-Pérez E, Pérez-Pacheco SA, Freytez-Boggio E, Maldonado-Maldonado JI, et al. An approach to remediation of a tropical aquifer contaminated with hydrocarbons. Environmental Quality Management. 2022;31(4):357–90. DOI: https://doi.org/10.1002/tqem.21820
25. Escudero-López HJ, Jácome-Pilco CR, Sanaguano-Salguero HDR, Bayas-Morejón IF, Serrano-Carrillo KA. Bacterial selection of the Pseudomonas genus with the capacity to treat water and contaminated soils. Journal of Water and Land Development. 2022;(53):238–41. DOI: https://doi.org/10.24425/jwld.2022.140803
26. Ojeda-Morales ME, Álvarez-Ramírez JG, Hernández-Rivera MÁ, DomínguezDomínguez M, Zavala-Cruz J, Herrera-Haro JG, et al. Biodegradation of bioemulsified heavy oil in mangrove soil | Biodegradación de petróleo pesado bioemulsionado en un suelo de manglar. Mexican Journal of Biotechnology. 2025;10(2):42–63. DOI: https://doi.org/10.29267/mxjb.2025.10.2.42-63
27. González-Toril E, Aguilera A, Permanyer A, Gallego JR, Márquez G, Lorenzo E. Metagenomic analysis of the microbial community at the Riutort oil shale mine (NE Spain): Potential applications in bioremediation and enhanced oil recovery. Fuel. 2023;349. DOI: https://doi.org/10.1016/j.fuel.2023.128609
28. Valdiviezo Gonzales LG, Castañeda-Olivera CA, Cabello-Torres RJ, García Ávila FF, Munive Cerrón RV, Alfaro Paredes EA. Scientometric study of treatment technologies of soil pollution: Present and future challenges. Applied Soil Ecology. 2023;182. DOI: https://doi.org/10.1016/j.apsoil.2022.104695
29. Song Y, Li R, Chen G, Yan B, Zhong L, Wang Y, et al. Bibliometric analysis of current status on bioremediation of petroleum contaminated soils during 2000–2019. International Journal of Environmental Research and Public Health. 2021;18(16). DOI: https://doi.org/10.3390/ijerph18168859
30. García VJ, Márquez CO, Cedeño AR, Montesdeoca KG. Assessing bioremediation of soils polluted with fuel oil 6 by means of diffuse reflectance spectroscopy. Resources. 2019;8(1). DOI: https://doi.org/10.3390/resources8010036
31. Orejuela-Romero JA, Herrera Cuadrado ZV, Heredia Jara DA, Núñez Moreno MS, Santillán-Quiroga LM, Barahona M, et al. Oil Palm Bagasse as a Treatment for Soils Contaminated with Total Petroleum Hydrocarbons. Sustainability Switzerland. 2025;17(2). DOI: https://doi.org/10.3390/su17020422
32. Kumari B, Chandra R. Benzo[a]pyrene degradation from hydrocarboncontaminated soil and their degrading metabolites by Stutzerimonas stutzeri (LOBP19A). Waste Management Bulletin. 2023;1(3):115–27. DOI: https://doi.org/10.1016/j.wmb.2023.07.006
33. Ruseva A, Minnikova T, Kolesnikov S, Revina S, Trushkov A. Ecological State of Haplic Chernozem after Pollution by Oil at Different Levels and Remediation by Biochar. Sustainability (Switzerland). 2023;15(18). DOI: https://doi.org/10.3390/su151813375
34. Du J, Jia T, Liu J, Chai B. Relationships among protozoa, bacteria and fungi in polycyclic aromatic hydrocarbon-contaminated soils. Ecotoxicology and Environmental Safety. 2024;270. DOI: https://doi.org/10.1016/j.ecoenv.2023.115904
35. Minnikova T, Kolesnikov S, Minin N, Gorovtsov A, Vasilchenko N, Chistyakov V. The Influence of Remediation with Bacillus and Paenibacillus Strains and Biochar on the Biological Activity of Petroleum-Hydrocarbon-Contaminated Haplic Chernozem. Agriculture (Switzerland). 2023;13(3). DOI: https://doi.org/10.3390/agriculture13030719
36. Cheffi M, Hentati D, Chebbi A, Mhiri N, Sayadi S, Marqués AM, et al. Isolation and characterization of a newly naphthalene-degrading Halomonas pacifica, strain Cnaph3: biodegradation and biosurfactant production studies. 3 Biotech. 2020;10(3). DOI: https://doi.org/10.1007/s13205-020-2085-x
37. El-Housseiny GS, Aboshanab KM, Aboulwafa MM, Hassouna NA. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. AMB Express. 2020;10(1). DOI: https://doi.org/10.1186/s13568-020-01141-0
38. Castillo-Campos E, Mugica-Álvarez V, Roldán-Carillo TG, Olguín-Lora P, Castorena-Cortés GT. Modification of wettability and reduction of interfacial tension mechanisms involved in the release and enhanced biodegradation of heavy oil by a biosurfactant. Revista Mexicana de Ingeniera Quimica. 2021;20(3). DOI: https://doi.org/10.24275/rmiq/IA2427
39. Orellana R, Cumsille A, Rojas C, Stuardo C, Cabrera P, Arancibia G, et al. Economic Evaluation of Bioremediation of Hydrocarbon-Contaminated Urban Soils in Chile. Sustainability Switzerland. 2022;14(19). DOI: https://doi.org/10.3390/su141911854
40. Domínguez-Rodríguez VI, Hernández-Acosta L, Gómez-Cruz R, Rosique-Gil JE, Adams RH, Guzmán-Osorio FJ. Recovery of Petroleum BrineContaminated Soil by Eleocharis sp. in a Tropical Marshland. Tropical Life Sciences Research. 2024;35(2):141–65. DOI: https://doi.org/10.21315/tlsr2024.35.2.7
41. Vergnano A, Raffa CM, Godio A, Chiampo F. Speciation of the Removed Pollutants in Bioremediation of Hydrocarbon-Contaminated Soil. Applied Sciences (Switzerland). 2024;14(21). DOI: https://doi.org/10.3390/app14219813
Published
Issue
Section
License
Copyright (c) 2024 Solange del Rocío Lituma Carriel (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.