Biological Control of Planococcus citri by Entomopathogenic Fungi: A Review of Mechanisms and Applications
DOI:
https://doi.org/10.56294/evk2024128Keywords:
Entomopathogenic Fungus, Planoccocus Citri, Biological Control, Invertebrates, BioinsecticideAbstract
Introduction: entomopathogenic fungi (EPFs) represent a sustainable and effective alternative for the biological control of agricultural pests, such as the citrus scale (Planococcus citri), which significantly affects lemon crops in Ecuador. These fungi, including Beauveria bassiana, Metarhizium anisopliae, and Lecanicillium lecanii, act as natural insect pathogens, reducing dependence on chemical pesticides.
Objective: to review the potential of EPFs as biological control agents against Planococcus citri, analyzing their mechanisms of action, efficacy, and applications in Ecuadorian agriculture.
Development: EPFs infect scale insects by adhesion, germination, penetration, and colonization, producing enzymes and toxins that degrade the insect's cuticle. Studies show that strains such as Metarhizium anisopliae and Lecanicillium lecanii are especially effective against P. citri nymphs and adults. However, their effectiveness can be limited by environmental factors such as humidity, temperature, and the presence of waxy coatings on the insect.
Conclusions: HEPs are a promising tool for integrated pest management in citrus, although their success depends on optimal environmental conditions and stable formulations. Further local research evaluating native strains and application strategies is recommended to maximize their effectiveness in controlling P. citri.
References
1. Islam W, Adnan M, Shabbir A, Naveed H, Abubakar YS, Qasim M, et al. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog. 2021;159:105122. DOI: https://doi.org/10.1016/j.micpath.2021.105122
2. González–Guzmán A, Sacristán D, Sánchez‐Rodríguez AR, Barrón V, Torrent J, Del Campillo MC. Soil Nutrients Effects on the Performance of Durum Wheat Inoculated with Entomopathogenic Fungi. Agronomy. 2020;10(4):589. DOI: https://doi.org/10.3390/agronomy10040589
3. Anilkumar R, Edison L, Sukumaran P. Exploitation of Fungi and Actinobacteria for Sustainable Agriculture. In: Microbial Interventions in Agriculture and Environment. Singapore: Springer; 2017. p. 135-62. DOI: https://doi.org/10.1007/978-981-10-6847-8_6
4. Bamisile B, Akutse K, Siddiqui J, Xu Y. Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture. Front Plant Sci. 2021;12:741804. DOI: https://doi.org/10.3389/fpls.2021.741804
5. Fernández N, Sepúlveda S, Ceballos R. Formulaciones de Hongos Entomopatógenos: HEPs 2.0 para el control de insectos plaga. Tierra Adentro. 2020;(6):12-7.
6. Correal C, Torres L, Villamar L, Rivero V, Bustillo A, Zuluaga M, et al. Hongos entomopatógenos en el control biológico de insectos plaga. In: Espinel Correa C, Torres Torres LA, Villamizar Rivero LF, Bustillo Pardey AE, Zuluaga Mogollón MV, Cotes Prado AE, editores. Control biológico de fitopatógenos, insectos y ácaros. Colombia: Corporación Colombiana de Investigación Agropecuaria; 2018. p. 334-67.
7. Góngora CE, Gil-Palacio ZN. Control biológico de cochinillas de las raíces del café con hongos entomopatógenos. Cenicafe. 2020;71(2):53–65. DOI: https://doi.org/10.38141/10778/71204
8. Cloyd R, Herrick N. Are Entomopathogenic Fungal-based Insecticides and Insect Growth Regulator Mixtures Effective Against the Citrus Mealybug, Planococcus citri (Hemiptera: Pseudococcidae), Feeding on Coleus, Solenostemon scutellarioides, Plants under Greenhouse Conditions? HortScience. 2023;58(10):1225–9. DOI: https://doi.org/10.21273/HORTSCI17291-23
9. Ramirez C, Morales F, Alatorre R, Mena J, Méndez S. Efectividad de hongos entomopatógenos sobre la mortalidad de Dactylopius opuntiae (Hemiptera: Dactylopiidae) en condiciones de laboratorio. Rev Mex Cienc Agric. 2019;10(22):165-75.
10. Carvalho MMP, Corrêa Reis LA, Pinheiro MLC, Moreira MM, Vieira DA, Souza B. Is a diet of Planococcus citri nymphs and adults suitable for Chrysoperla externa for use in biological control? Rev Bras Entomol. 2023;67(1):e20220010. DOI: https://doi.org/10.1590/1806-9665-rbent-2022-0010
11. Daane KM, Almeida RPP, Bell VA, Walker JTS, Botton M, Fallahzadeh M, et al. Biology and Management of Mealybugs in Vineyards. In: Arthropod Management in Vineyards. Dordrecht: Springer; 2012. p. 271-307. DOI: https://doi.org/10.1007/978-94-007-4032-7_12
12. Mani M, Shivaraju C. Mealybugs and their management in agricultural and horticultural crops. Springer; 2016. DOI: https://doi.org/10.1007/978-81-322-2677-2
13. GBIF Secretariat. GBIF Backbone Taxonomy. Checklist dataset. 2023.
14. Pagad S. Áreas Protegidas - Registro Global de Especies Introducidas e Invasoras - Islas Galápagos, Ecuador. Grupo de especialistas en especies invasoras ISSG. Conjunto de datos de la lista de verificación. 2020.
15. García-Álvarez NC, Urías-López MA, Hernández-Fuentes LM, Osuna- García JA, Medina-Torres R, González Carrillo JA. Distribución temporal y potencial reproductivo de la cochinilla rosada del hibisco (Hemiptera: Pseudococcidae) en Nayarit, México. Rev Mex Cienc Agric. 2014;5(1):5-16. DOI: https://doi.org/10.29312/remexca.v5i1.976
16. Viera Chiroque MC. Ciclo biológico de Planococcus citri (Risso) “chanchito blanco” en cultivo de vid variedad Red Globe. Piura, 2016 [tesis]. Piura: Universidad Nacional de Piura; 2019.
17. Nakahara S, Williams ML. The soft scale insects found in the continential United States (Homoptera: Coccidae). A syllabus prepared for the 1974 Coddidology Training Session. Beltsville: USDA; 1980.
18. Pertuit AJ Jr. Influence of temperature during long-night exposures on growth and flowering of 'Mace,' Thor,' and Telstar' kalanchoes. HortScience. 1977;12(1):48-9. DOI: https://doi.org/10.21273/HORTSCI.12.1.48
19. Pirone PP. Mealybugs. In: Diseases and Pests of Ornamental Plants. 5th ed. New York: Wiley; 1978. p. 62.
20. Carbajal S. Identificación taxonómica, morfología y comportamiento de Planococcus (Hemiptera: Pseudococcidae) en el cultivo de vid (Vitis vinifera). Lima: Sociedad Entomológica del Perú; 2013.
21. Martinez Ferrer MT. Biología y control del cotonet Planococcus citri (Homoptera: Pseudococcidae) en huertos de cítricos [tesis]. Valencia: Universidad Politécnica de Valencia; 2003.
22. Bravo YV, Cordoba LM. Manejo agroecológico del cultivo de café (Coffea arábica), hacia una agricultura sostenible. Bogotá: Universidad Nacional Abierta y a Distancia - UNAD; 2023.
23. García-Valente F, Ortega-Arenas LD, González-Hernández H, Villanueva- Jiménez JA, López-Collado J, González-Hernández A, et al. Parasitismo natural e inducido de Anagyrus kamali sobre la cochinilla rosada en brotes de teca, en Bahía de Banderas, Nayarit. Agrociencia. 2009;43(7):729-38.
24. Mantzoukas S, Papadopoulos A, Hatzigeorgiou D. Fungal entomopathogens: A promising tool for sustainable pest management. J Pest Sci. 2022;95(1):1-17.
25. Khan S, Guo I, Maimaiti Y, Mijit M, Qiu D. Hongos entomopatógenos como agente de biocontrol microbiano. Biotechnol Mol Plant Breed. 2012;3:63-79.
26. Valbuena Puentes AH, Galindo Soracá AM, Boyacá Quintana YM. Efecto del hongo entomopatógeno Beauveria bassiana (balsamo) Vuillemin en el control de la oveja ked (Melophagus ovinos). Rev Investig Vet Peru. 2021;32(2):e18362. DOI: https://doi.org/10.15381/rivep.v32i2.18362
27. Bava V, De Luca E, Locci R. Fungal entomopathogens: A review of their diversity, ecology and applications. Biol Control. 2022;148:104620.
28. Barra-Bucarei L, France AF, Pino CP. Entomopathogenic fungi. In: Advances in Biological Control. Springer; 2019. p. 123-36. DOI: https://doi.org/10.1007/978-3-030-24733-1_11
29. Shin H, Lee S, Lee J. Molecular mechanisms of fungal entomopathogens. J Microbiol Biotechnol. 2020;30(10):2129-40.
30. Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Chapter Nine -Entomopathogenic Fungi: New Insights into Host–Pathogen Interactions. In: Lovett B, St. Leger RJ, editores. Advances in Genetics. 2016;94:307-64. DOI: https://doi.org/10.1016/bs.adgen.2016.01.006
31. Davit Colo B. Ecología química y genes involucrados en la interacción entre insectos tenebriónidos y hongos entomopatógenos [tesis doctoral]. La Plata: Universidad Nacional de La Plata; 2022.
32. Miranda AVC, Espejo Y del CB, Salas JLTF, González HHS, Aguilera JG, Martínez LA. Biopesticides: Mechanisms of biocidal action in pest insects. Res Soc Dev. 2021;10(7):e42010716893. DOI: https://doi.org/10.33448/rsd-v10i7.16893
33. Santi L, Beys da Silva WO, Berger M, Guimarães JA, Schrank A, Vainstein MH. Conidial surface proteins of Metarhizium anisopliae: Sourceof activities related with toxic effects, host penetration and pathogenesis. Toxicon. 2010;55(4):874-80. DOI: https://doi.org/10.1016/j.toxicon.2009.12.012
34. Téllez-Jurado A, Cruz Ramírez MG, Mercado Flores Y, Asaff Torres A, Arana-Cuenca A. Mecanismos de acción y respuesta en la relación de hongos entomopatógenos insectos. Rev Mex Micol. 2009;30:73-80.
35. Freimoser FM, Grundschober A, Tuor U, Aebi M. Regulation of hyphal growth and sporulation of the insect pathogenic fungus Entomophthora thripidum in vitro. FEMS Microbiol Lett. 2003;222(2):281-7. DOI: https://doi.org/10.1016/S0378-1097(03)00315-X
36. Tanada Y, Kaya HK. Insect Pathology. Academic Press; 2012.
37. Nguyen D, Kim C. Fungal entomopathogens: Mechanisms of action and applications. J Fungal Biol. 2022;16(2):129-44.
38. Kovaleva O, Lacey L. Fungal entomopathogen life cycles: Diversity, complexity and challenges. Fungal Ecol. 2022;28:100483.
39. Vega FE. El uso de hongos entomopatógenos como endófitos en el control biológico: una revisión. Mycologia. 2018;110(1):4-30. DOI: https://doi.org/10.1080/00275514.2017.1418578
40. Akrich A, Righi K, Righi FA, et al. Characterization of a new isolate of Beauveria bassiana in Algeria and evaluation of its pathogenicity against the cowpea aphid (Aphis craccivora Koch). Egypt J Biol Pest Control. 2023;33:73. DOI: https://doi.org/10.1186/s41938-023-00723-x
41. Sarubbi H, Resquín-Romero G, Garrido-Jurado I. Identificación de hongos entomopatógenos nativos asociados a Mahanarva fimbriolata Stahl en sistemas silvopastoriles (Urochloa brizantha cv. MG-5 y Eucalyptus spp.). Egypt J Biol Pest Control. 2023;33:110. DOI: https://doi.org/10.1186/s41938-023-00756-2
42. Golzan SR, Talaei-Hassanloui R, Homayoonzadeh M, Safavi SA. Role of cuticle-degrading enzymes of Beauveria bassiana and Metarhizium anisopliae in virulence on Plodia interpunctella (Lepidoptera, Pyralidae) larvae. J Asia Pac Entomol. 2023;26(2):102038. DOI: https://doi.org/10.1016/j.aspen.2023.102038
43. Amutha M, Gulsar Banu J. Variation in Mycosis of Entomopathogenic Fungi on Mealybug, Paracoccus marginatus (Homoptera: Pseudococcidae). Proc Natl Acad Sci India Sect B Biol Sci. 2015;87(2):343–9. DOI: https://doi.org/10.1007/s40011-015-0624-8
44. Ghaffari S, Karimia J, Kamali S, Mahdikhani Moghadam E. Biocontrol of Planococcus citri (Hemiptera: Pseudococcidae) by Lecanicillium longisporum and Lecanicillium lecanii in laboratory and greenhouse conditions. J Asian Pac Entomol. 2017;20(2):605-12. DOI: https://doi.org/10.1016/j.aspen.2017.03.019
45. Luangsa-Ard J, Houbraken J, van Doorn T, Hong SB, Borman AM, Hywel- Jones NL, et al. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett. 2011;321:141–9. DOI: https://doi.org/10.1111/j.1574-6968.2011.02322.x
46. Srilakshmi A, Sai Gopal DVR, Narasimha G. Impact of bioprocess parameters on cellulase production by Purpureocillium lilacinum isolated from forest soil. Int J Pharm Bio Sci. 2017;8(1):157-65. DOI: https://doi.org/10.22376/ijpbs.2017.8.1.b157-165
47. Bidyarani Devi E, Premabati Devi E, Deepshikha. Hongos entomopatógenos: una revisión sobre las perspectivas de los hongos entomopatógenos como potentes agentes de control biológico de plagas de insectos. Int J Curr Res Biosci Plant Biol. 2016;3(9):74-82. DOI: https://doi.org/10.20546/ijcrbp.2016.309.011
48. Kamga SF, Ndjomatchoua FT, Guimapi RA, Klingen I, Tchawoua C, Hjelkrem AR, et al. The effect of climate variability in the efficacy of the entomopathogenic fungus Metarhizium acridum against the desert locust Schistocerca gregaria. Sci Rep. 2022;12(1):11424. DOI: https://doi.org/10.1038/s41598-022-11424-0
49. Pacheco J, González M, López J. Fungal entomopathogens for the control of agricultural pests: A review. J Pest Sci. 2019;92(2):225-45.
50. Dubovskiy IM, Whitten MMA, Yaroslavtseva ON, Greig C, Kryukov VY, Grizanova EV, et al. Can insects develop resistance to insect pathogenic fungi? PLOS ONE. 2013;8(4):e60248. DOI: https://doi.org/10.1371/journal.pone.0060248
51. Hidalgo D, Tello C. Manual para la producción de hongos entomopatógenos y análisis de calidad de bioformulados. Manual N° 128. La Concordia: Instituto Nacional de Investigaciones Agropecuarias (INIAP); 2022. 35 p.
52. Santistevan Méndez M, Julca Otiniano A, Helfgott Lerne S. Caracterización de las fincas productoras del cultivo limón en las localidades de Manglaralto y Colonche, (Santa Elena, Ecuador). Rev Cient Tecnol UPSE. 2015;3(1):133-42. DOI: https://doi.org/10.26423/rctu.v3i1.81
53. Indriyani NN, Al Anshori J, Permadi N, Nurjanah S, Julaeha E. Componentes bioactivos y sus actividades a partir de diferentes partes de Citrus aurantifolia (Christm.) Swingle for Food Development. Foods. 2023;12(10):2036. DOI: https://doi.org/10.3390/foods12102036
54. Castillo Carrillo PS. Insectos y ácaros plagas en cítricos con énfasis en el cultivo de limón sutil [tesis]. Tumbes: Universidad de Tumbes; 2019.
Published
Issue
Section
License
Copyright (c) 2024 Solange del Rocío Lituma Carriel (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.