Application of simulation tools to HAZOP analysis of exothermic reaction processes
DOI:
https://doi.org/10.56294/evk2024102Keywords:
HAZOP, dynamic simulation, CSTR reactor, risk analysis, operational windowsAbstract
Introduction: The article addressed the integration between process simulation and HAZOP studies as a tool for risk analysis in the chemical industry. It was identified that, despite the effectiveness of traditional HAZOP, its qualitative nature and dependence on expert judgment limited its scope in complex systems. In response, it was proposed to review the use of simulation - in steady state and dynamic - as a support to improve the identification and evaluation of deviations in industrial processes, especially in CSTR type reactors.
Development: The principles of chemical process simulation and its application using tools such as Aspen HYSYS were described. The advantages of mathematical modeling for predicting the behavior of a system in the face of disturbances were analyzed. In particular, a case of propylene glycol production in a CSTR reactor was studied, highlighting the influence of parameters such as temperature, reactant flow and unstable operating zones. Key concepts of the HAZOP study, the LOPA methodology and the design of protection layers were reviewed and linked to data obtained from detailed simulations. Visual tools such as bifurcation diagrams and operational windows were exemplified.
Conclusions: The review evidenced that the use of simulation strengthens risk analyses by complementing the HAZOP approach with quantitative data. This combination improved the accuracy of the analysis, reduced the study execution time and increased the reliability of the results. It was concluded that the integration of advanced simulators represents a key trend in the evolution towards more digitized and efficient risk management.
References
1. Arce E. La simulación como herramienta de desarrollo en la Ingeniería Química [Internet]. 1995 [citado 2025 jun 9]. Disponible en: https://www.academia.edu/2043783/La_simulación_como_herramienta_de_desarrollo_en_la_Ingeniería_Química
2. Crowl DA, Louvar JF. Chemical Process Safety: Fundamentals with Applications. 2ª ed. Prentice Hall; 2002.
3. Danko M, Janosovsky J, Labovsky J, Jelemensky L. Integration of process control protection layer into a simulation-based HAZOP tool. J Loss Prev Process Ind. 2019; DOI: https://doi.org/10.1016/j.jlp.2018.12.006 DOI: https://doi.org/10.1016/j.jlp.2018.12.006
4. Danko M, Janosovsky J, Labovsky J, Labovska Z, Jelemensky L. Use of LOPA Concept to Support Automated Simulation-Based HAZOP Study. Chem Eng Trans. 2018;67:283–8. DOI: https://doi.org/10.3303/CET1867048
5. Fogler HS. Elementos de ingeniería de las reacciones químicas. 4ª ed. Pearson Prentice Hall; 2008.
6. Gil I, Guevara J, García J, Leguizamón A, Rodríguez G. Process Analysis and Simulation in Chemical Engineering. Springer; 2016. DOI: 10.1007/978-3-319-14812-0 DOI: https://doi.org/10.1007/978-3-319-14812-0
7. Hernández E. Diseño de un caso base de una planta de producción de Glicol de Propileno [Internet]. Matanzas: Universidad de Matanzas "Camilo Cienfuegos"; 2012 [citado 2025 jun 9]. Disponible en: http://cict.umcc.cu/repositorio/tesis/Trabajos%20de%20Diploma/Ingeniería%20Química/2012/Diseño%20de%20un%20caso%20base%20de%20una%20planta%20de%20producción%20de%20Glicol%20de%20Propileno%20(Edel%20Hernández%20Bustos).pdf
8. Ibarra J. Guía para la realización de estudios HAZOP (HAZard and OPerability analysis) [Internet]. 2007 [citado 2025 jun 9]. Disponible en: https://www.academia.edu/29813154/GUÍA_PARA_LA_REALIZACIÓN_DE_ESTUDIOS_HAZOP_HAZard_and_OPerability_analysis
9. Janosovsky J, Danko M, Labovsky J, Jelemensky L. Development of a Software Tool for Hazard Identification Based on Process Simulation. Chem Eng Trans. 2019; DOI: https://doi.org/10.3303/CET1977059
10. López J, Méndez S. Validación de un estudio HAZOP realizado mediante la metodología tradicional usando la simulación del proceso. Trabajo Especial de Grado. Universidad Central de Venezuela; 2023.
11. Maraima Y. Metodología para estudios de peligros de procesos en la seguridad funcional de una planta típica de compresión, haciendo uso del Digital Twin de la planta. Trabajo Especial de Grado. Universidad Central de Venezuela; 2022.
12. Marlin T. Teaching Operability in Undergraduate Chemical Engineering Design Education. 2007. DOI: 10.18260/1-2--1502 DOI: https://doi.org/10.18260/1-2--1502
13. Petróleos de Venezuela, S.A. (PDVSA). Manual de Ingeniería de Riesgos: PDVSA IR-S-01, Filosofía de Diseño Seguro. Venezuela; 2010.
14. Pereira J. Análisis de riesgos en una planta de compresión utilizando como herramienta la simulación del proceso. Trabajo Especial de Grado. Universidad Central de Venezuela; 2016.
15. Willey R. Layer of Protection Analysis. Procedia Eng. 2014;84:835–43. DOI: 10.1016/j.proeng.2014.10.405 DOI: https://doi.org/10.1016/j.proeng.2014.10.405
16. Wu J, Zhang L, Hu J, Lind M, Zhang X, Jørgensen SB, et al. An integrated qualitative and quantitative modeling framework for computer-assisted HAZOP studies. AIChE J. 2014; DOI: https://doi.org/10.1002/aic.14593 DOI: https://doi.org/10.1002/aic.14593
Published
Issue
Section
License
Copyright (c) 2024 Oswaldo A. Azuaje G, Andrés Rosales, Francisco Da Silva (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.